April 7, 2005 Project A08-21

Mr. Corey M. Walsh Regional Water Quality Control Board Central Coast Region 895 Aerovista Place, Suite 101 San Luis Obispo, CA 93401-7906

Re: Results of the March, 2005 Quarterly Groundwater Monitoring and Request for Site Closure, Chalk Mountain Liquor, Atascadero, California

Dear Mr. Walsh:

HerSchy Environmental is pleased to present this report summarizing the results of the March, 2005 quarterly monitoring results. The site is located at 9990 El Camino Real, in Atascadero, San Luis Obispo County, California (Figure 1). Five two-inch groundwater monitoring wells were sampled on December 21, 2004. Three underground storage tanks (USTs) were removed from the site on May 7, 2004. Three new USTs were installed at a later date after approximately 40,000 gallons of groundwater were purged during excavation dewatering. Details of soil and groundwater sampling during tank removal activities are included in the June 16, 2004, "Results of Sampling and Analysis for Underground Storage Tank (UST) Removal, Chalk Mountain Liquor, Atascadero, California" report prepared by HerSchy Environmental, Inc.

METHODS OF INVESTIGATION

Groundwater Sampling Procedures

Groundwater samples were collected from each of the site monitoring wells (MW-1 through MW-5) on March 16, 2005. Before collecting groundwater samples, the monitoring wells were measured for static water level using an electric sounder. Depth to groundwater was recorded to the nearest 0.01 feet on the field sampling data sheets. Groundwater elevation in the monitoring wells was calculated by subtracting the measured depth to groundwater from the surveyed well elevation.

Approximately three casing volumes were purged from each well prior to sampling. Depth to groundwater, total depth of the well and well diameter were used to calculate the purge volume. All monitoring wells were purged and sampled using a Waterra electric pump with dedicated hoses. Physical characteristics (temperature, electrical conductivity, and pH), were measured and recorded in the field during the initial stages of purging and prior to sampling. Samples were collected from each well and placed in three 40-milliliter bottles fitted with Teflon-lined septa. Bottles were filled to form a positive meniscus and checked after capping to ensure that no air bubbles were in the sampling containers.

Immediately after sample collection, the groundwater samples were sealed in a plastic bag and placed in an insulated chest with frozen gel packs ("blue ice"). Samples were maintained at or below four degrees Celsius until delivered to the laboratory. Samples were stored, transported and delivered under chain-of-custody documentation. Groundwater field sampling data sheets and chain-of-custody documentation are presented in Appendix A.

Laboratory Analysis

Groundwater samples were analyzed for gasoline-range total petroleum hydrocarbons (TPHg), benzene, toluene, ethylbenzene, and xylenes (BTEX), and methyl tertiary butyl ether (MTBE). Samples were analyzed using EPA method 8260 for BTEX and MTBE. Groundwater samples were also analyzed for the fuel oxegynates and additives di-isopropyl ether (DIPE), ethyl tertiary butyl ether (ETBE), tertiary amyl methyl ether (TAME), tertiary butanol (TBA), 1,2-dichloroethane (1,2-DCA) and ethylene dibromide (EDB) using EPA method 8260.

RESULTS OF INVESTIGATION

Hydrogeologic Conditions

For the March, 2005 sampling event, depth to groundwater averaged 1.80 feet or 949.86 feet above mean sea level based on monitoring wells MW-1 through MW-5. The elevation of groundwater beneath the site increased 0.69 feet between the December, 2004 and March, 2005 monitoring events based on depth to groundwater. Groundwater flow direction was north 88 degrees east with a gradient of 0.0112. Groundwater conditions are presented graphically on Figure 1 and summarized in Table 1 below:

Table 1
Groundwater Conditions, Chalk Mountain Liquor, Atascadero, California

Well Number	Casing Elevation	Depth to GW	GW Elevation
March 11, 2004			
MW-1	992.00	1.34	990.66
MW-2	993.58	1.67	991.91
MW-3	993.61	2.28	991.33
Groundwater: N. 66 E.	; Gradient: 0.012		
June 23, 2004			
MW-1	992.00	3.84	988.16
MW-2	993.58	3.63	989.95
MW-3	993.61	4.70	988.91
MW-4	Not Surveyed	1.62	
MW-5	Not Surveyed	2.68	
Groundwater: N. 52 E.			
September 22, 2004*			
MW-1	951.52	2.85	948.67
MW-2	953.18	3.58	949.60
MW-3	953.18	3.98	949.20
MW-4	949.66	1.62	948.04
MW-5	950.76	2.52	948.24
Groundwater: S. 86 E.;	Gradient: 0.0081		

Table 1 (Continued)

Well Number	Casing Elevation	Depth to GW	GW Elevation
December 21, 2004*			
MW-1	951.52	2.43	949.09
MW-2	953.18	2.93	950.25
MW-3	953.18	3.57	949.61
MW-4	949.66	1.56	948.10
MW-5	950.76	1.95	948.81
Groundwater: S. 85 E.;	Gradient: 0.0093		
March 16, 2005*			
MW-1	951.52	2.06	949.46
MW-2	953.18	1.97	951.21
MW-3	953.18	2.98	950.20
MW-4	949.66	0.91	948.75
MW-5	950.76	1.09	949.67
Groundwater: N. 88 E.;	Gradient: 0.0112		

Elevations in feet

Groundwater Quality

Certified analytical reports and chain-of-custody documentation are presented in Appendix B. Laboratory analytical results are summarized in Table 2 below:

Table 2
Laboratory Analytical Results for Groundwater
Chalk Mountain Liquor, Atascadero, California

		CARRELL LILO		ON THE PROPERTY OF	C START OF REALTY		
Well	TPHg	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	TBA
March 11,	2004						
MW-1	ND	16	ND	ND	ND	15	390
MW-2	ND	ND	ND	ND	ND	0.78	ND
MW-3	ND	ND	ND	ND	ND	ND	ND
June 23, 2	004						
MW-1	ND	ND	ND	ND	ND	6.3	70
MW-2	ND	ND	ND	ND	ND	0.55	ND
MW-3	ND	ND	ND	ND	ND	ND	ND
MW-4	ND	ND	ND	ND	ND	ND	ND
MW-5	ND	ND	ND	ND	ND	ND	ND
September	22, 2004						
MW-1	ND	ND	ND	ND	ND	50	ND
MW-2	ND	ND	ND	ND	ND	6.4	ND
MW-3	ND	ND	ND	ND	ND	2.4	ND
MW-4	ND	ND	ND	ND	ND	ND	ND
MW-5	ND	ND	ND	ND	ND	ND	ND

^{*}Based on new survey (October 3, 2004)

As per the request of Mr. Corey Walsh of the Regional Water Quality Control Board (RWQCB), the format of Table 2 has changed to that seen below. Table 2 will be presented in this format in all future groundwater monitoring reports.

	Ta	ab	le	2	
10	OT	ıti	nı	iec	n

				(Continued)				
Well (0.50)*	TPHg (50)*	Benzene (0.50)*	Toluene (0.50)*	Ethylbenzene (0.50)*	Xylenes (0.50)*	TBA (20)*	MTBE (0.50)*	1,2-DCA (0.50)*
Decembe	r 21, 2004							
MW-1	ND	ND	ND	ND	ND	ND	19	ND
MW-2	ND	ND	ND	ND	ND	ND	6.5	ND
MW-3	ND	ND	ND	ND	ND	ND	4.7	ND
MW-4	ND	ND	ND	ND	ND	ND	ND	ND
MW-5	ND	ND	ND	ND	ND	ND	ND	39
March 16	5, 2005							
MW-1	ND	ND	ND	ND	ND	ND	14	ND
MW-2	ND	ND	ND	ND	ND	ND	5.1	ND
MW-3	ND	ND	ND	ND	ND	ND	6.4	ND
MW-4	ND	ND	ND	ND	ND	ND	ND	ND
MW-5	ND	ND	ND	ND	ND	ND	ND	ND

All results presented in parts per billion (ppb)

MTBE, TBA, and 1,2-DCA results by EPA method 8260

The fuel additive MTBE was detected in MW-1, MW-2, and MW-3 at 14 ppb, 5.1 ppb, and 6.4 ppb, respectively. The degradation product TBA was not detected during this sampling event. For the first quarter since the installation of MW-5, 1,2-DCA was not detected in groundwater in this well.

CONCLUSIONS AND RECOMMENDATIONS

The fuel additive MTBE continues to be detected in the three onsite groundwater monitoring wells (MW-1 through MW-3) in relatively low concentrations. The down gradient well MW-4 has been sampled and analyzed for four consecutive quarters and none of the analytes have been detected in this well.

Because only relatively low concentrations of the fuel additive MTBE are present in onsite groundwater monitoring wells, and MTBE has yet to be detected in MW-4, it is reasonable to assume that the contaminant plume is fairly stable. The only confirmed down gradient water supply well within a half mile of the release is used solely for irrigation and is screened at a depth no less than 140 feet bgs. Based on these circumstances, it appears that contamination beneath the site does not pose a human or environmental health risk. Therefore, it continues to be the recommendation of HerSchy Environmental, Inc. that the subject site be closed and that no further investigation be conducted.

The next quarterly groundwater monitoring event is currently scheduled for March, 2005. This monitoring event will take place unless closure is granted by your office. If you have any questions or require additional information, please contact me at the letterhead address or at (559) 641-7320.

^{* =} reporting limit in ppb

ND = below detectable concentrations

With best regards, HerSchy Environmental, Inc.

Joshua A. Teves Project Geologist

James S. Olbinski

Registered Geologist #4274

pc: Mr. Aaron LeBarre, San Luis Obispo County Public Health Agency Mr. Roy Saunders, Jaco Oil Company

ERED GEO

JAMES S OLDINGNI No. 4274

F OF CALIFO

APPENDIX A GROUNDWATER FIELD SAMPLING DATA SHEETS

HerSchy WATER SAMPLE FIELD DATA SHEET Environmental

Environmental
Client Name: Chalk Mt. Liquor Location: Atascader
Purged By: Gurule Sampled by: Gurule
Sample ID: MW-1 Type: Groundwater X Surface Water Other
Casing Diameter (inches): 2 X 3 4 5 6 Other
Casing Elevation (feet/MSL): 951.52 Volume in Casing (gal.): 2.49 Depth of Well (feet): 17.27 Calculate Purge Volume (gal.): 7.48
Depth to Water (feet): 2,06 Actual Purge Volume (gal.): 7,5+
Date Purged: 3/16/05 Date Sampled: 3/16/05 1305
TIME VOLUME pH E.C. TEMP. TURBIDITY
1256 - 7.05 1368 71.0 Milky
1256 — 7.05 1368 71.0 Milky 1304 7.5 7.16 1316 67,9 "1
Other Observations: Odor: \(\sqrt{\gamma_n} \)
Purging Equipment: Waters
Sampling Equipment:
Remarks:
Sampler's Signature:
/Water Sample Sheet.wpd

HerSchy WATER SAMPLE FIELD DATA SHEET Environmental Lhalk Mt. Liguer Location: Atascadero Sampled by: (14/4/e Purged By: () Uru(1 Sample ID: MW2 Type: Groundwater X Surface Water ____ Other ____ Casing Diameter (inches): 2 _____ 3 ____ 4 ____ 5 ____ 6 ____ Other _____ Casing Elevation (feet/MSL): 953, 18 Volume in Casing (gal.): 2,52 Depth of Well (feet): 17.34 Calculate Purge Volume (gal.): 4.56 Depth to Water (feet): Date Sampled: Date Purged: TIME . **VOLUME** pH E.C. TEMP. TURBIDITY Odor: Other Observations: Purging Equipment: Sampling Equipment: Remarks: Sampler's Signature:

/Water Sample Sheet.wpd

WATER SAMPLE FIELD DATA SHEET HerSchv Environmental halk Mt. Liquor Location: Itascadero Client Name: Sampled by: UVU/2 Purged By: (AUVul Sample ID: MV-3 Type: Groundwater X Surface Water Other Casing Diameter (inches): 2 ______ 3 _____ 4 _____ 5 _____ 6 _____ Other _____ Casing Elevation (feet/MSL): 953. 8 Volume in Casing (gal.): 2,37 Depth of Well (feet): 17.46 Calculate Purge Volume (gal.): 7.12 16 /05 ____ Date Sampled: Date Purged: E.C. TEMP. TURBIDITY TIME . VOLUME pH 6.76 1465 70.6 Odor: IVOne Other Observations: Purging Equipment: \(\lambda\) Sampling Equipment: Remarks:

Sampler's Signature:

/Water Sample Sheet.wpd

WATER SAMPLE FIELD DATA SHEET HerSchv Environmental halk Mt. Liquor Location: Atascadero Sampled by: Gurule Purged By: __(\u00e4U\u00e4u\u00e4u\u00e4 Sample ID: MW-4 Type: Groundwater X Surface Water ____ Other ____ Casing Diameter (inches): 2 ____X __ 3 ____ 4 ____ 5 ____ 6 ____ Other ____ Casing Elevation (feet/MSL): 949,66 Volume in Casing (gal.): 2.67 Depth of Well (feet): T+20 Calculate Purge Volume (gal.): X, O Actual Purge Volume (gal.): Depth to Water (feet): Date Sampled: Date Purged: TIME . **VOLUME** pH Odor: Other Observations: Purging Equipment: Sampling Equipment: Remarks:

Sampler's Signature:

/Water Sample Sheet.wpd

WATER SAMPLE FIELD DATA SHEET HerSchy Environmental K Mt. Liquor Location: Atascodero Sampled by: Gurule Purged By: Sample ID: MW-5 Type: Groundwater X Surface Water ____ Other ____ Casing Diameter (inches): 2 X 3 4 5 6 Other Casing Elevation (feet/MSL): 950,76 Volume in Casing (gal.): 2,68 Depth of Well (feet): 17.41 Calculate Purge Volume (gal.): 8,03 Depth to Water (feet): // () 9 Actual Purge Volume (gal.): _ Date Sampled: 1325 TURBIDITY VOLUME TEMP. Other Observations: Purging Equipment: Sampling Equipment: Remarks: Sampler's Signature: /Water Sample Sheet.wpd

APPENDIX B CERTIFIED ANALYTICAL RESULTS

AND

CHAIN-OF-CUSTODY DOCUMENTATION

Analytical Laboratories, Inc.

Laboratory Report Certification # 1920

CLIENT: HerSchy Environmental

TESTS: TPH Gas by EPA 8015M

Project Name:

Chalk Mt. Liquor

Matrix:

AQ

Sampled by:

Jeff Gurule

TPH g Analysis: 3/24/2005

Date of Report:

3/28/2005

Units: ug/l

Sample #:	7677-001	7677-002	7677-003	7677-004	7677-005	
Date Sampled:	3/16/2005	3/16/2005	3/16/2005	3/16/2005	3/16/2005	DL ug/l
Sample Description:	MW-I	MW-2	MW-3	MW-4	MW-5	
TPH Gasoline	ND	ND	ND	ND	ND	50
Surrogate Recovery %	100	100	86	99	98	

DL = Detection Limit

ND - Non-Detect at given DL

Analyst: Alexander Candia

5221 Woodmere Drive, Bakersfield, CA 93313 Phone: (661) 827-5240 Fax: (661)827-5244

Method RL

ProVera

Analytical Laboratories, Inc.

Certification # 1920

CLIENT:

HerSchy Environmental

Project ID:

Chalk Mt. Liquor

Analysis Type: EPA Method 8260B

Analysis Date: 3/25/2005

Report Date: 3/28/2005

Sample ID:

7677-001 MW-1

				Multiplication
Analyte	Result	Units	Method RL	Factor
5 Oxygenates				
t-Butanol (TBA) Tert-Butyl Alcohol	ND	ng/L	2.5	. 1
Methyl Tert-Butyl Ether (MTBE)	14	ug/L	0.5	1
Diisopropyl Ether (DIPE)	ND	ug/L	0.5	1
Ethyl Tert-Butyl Ether (ETBE)	ND	ugʻL	0.5	t
Tert-Amyl Methyl Ether (TAME)	ND	ug1.	0.5	ı
BTEX Components				
Benzene	ND	ug/L	0.5	1
Toluene	ND	ug/l.	0.5	1
Ethylbenzene	ND	ug/1,	0.5	1
m . p & o Xylenes	ND	ug/t.	0.5	1
Lead Scavengers				
1,2 Dichloro ethane (1,2 DCA)	ND	ng/L	0.5	1
1,2 Dibromo ethane (EDB)	ND	ug/L	0.5	1
Internal Standards	Results	% Recovery		
Benzene, fluoro	50	100%		
Benzene-d5, chloro-	50	100%		
1,4-Dichlorobenzene-d4	50	100%		
Surrogate Standards				
Methane, dibromofluoro-	50	100%		
1,2-Dichloroethane-d4	61	122%		
Toluene-16	44	88%		
p-Bromdisorabenzene (BFB)	49	98%		
Principal Analyst: Alexander Candia				

Method RL

ProVera

Analytical Laboratories, Inc.

Certification # 1920

CLIENT:

HerSchy Environmental

Project ID:

Chalk Mt. Liquor

Analysis Type: EPA Method 8260B

Analysis Date: 3/25/2005

Principal Analyst: Alexander Candia

Report Date: 3/28/2005

Sample ID:

7677-002 MW-2

Analyte	Result	Units	Method RL	Multiplication Factor
5 Oxygenates				
t-Butanol (TBA) Tert-Butyl Alcohol	ND	ug/1,	2.5	1
Methyl Tert-Butyl Ether (MTBE)	5.1	υд/1.	0.5	1
Diisopropyl Ether (DIPE)	ND	ug/L	0.5	t
Ethyl Tert-Butyl Ether (ETBE)	ND	ug/L	0.5	1
Tert-Amyl Methyl Ether (TAME)	ND	ug T.	0.5	1
BTEX Components				
Benzene	ND	ug/L	0.5	1
Toluene	ND	ug/L	0.5	L
Ethylbenzene	ND	ug/L	0.5	1
m , p & o Xylenes	ND	ug/L	0.5	1
Lead Scavengers				
1,2 Dichloro ethane (1,2 DCA)	ND	ug.T.	0.5	1
1,2 Dibromo ethane (EDB)	ND	ug'L	0.5	l
Internal Standards	Results	% Recovery		
Benzene, fluoro	50	100%		
Benzene-d5, chloro-	50	100%		
1.4-Dichlorobenzene-d4	50	100%		
Surrogate Standards				
Methane, dibromofluoro-	50	100%		
1,2-Dichloroethane-d4	41	82%		
Toluene-dB \	48	96%		
p-Bromafluorphenzene (BFB)	49	98%		

Analytical Laboratories, Inc.

Certification # 1920

CLIENT:

HerSchy Environmental

Project ID:

Chalk Mt. Liquor

Analysis Type: EPA Method 8260B

Analysis Date: 3/25/2005

Report Date: 3/28/2005

Sample ID:

7677-003 MW-3

Analyte	Result	Units	Method RL	Method RL Multiplication Factor
5 Oxygenates				
t-Butanol (TBA) Tert-Butyl Alcohol	ND	ugL	2.5	1
Methyl Tert-Butyl Ether (MTBE)	6.4	ug-I.	0.5	1
Diisopropyl Ether (DIPE)	ND	uget.	0.5	1
Ethyl Tert-Butyl Ether (ETSE)	NO	ugiL	0.5	1
Tert-Amyl Methyl Ether (TAME)	ND	ug'L.	0.5	1
BTEX Components				
Benzene	ND	ust'l.	0.5	1
Toluene	ND	ug'I.	0.5	1
Ethylbenzene	ND	ug/I	0.5	1
m , p & o Xylenes	ND	ug/L,	0.5	1
Lead Scavengers				
1.2 Dichloro ethane (1.2 DCA)	ND	ue.L	0.5	1
1,2 Dibromo ethane (EDB)	ND	ug/L	0.5	1
Internal Standards	Results	% Recovery		
Benzene, fluoro	50	100%		
Benzene-d5, chloro-	50	100%		
1,4-Dichlorobenzene-d4	50	100%		
Surrogate Standards				
Methane, dibromofluoro-	50	100%		
1,2-Dichloroethane-d4	65	130%		
Toluene-d8	51	102%		
p-Broniofiopobehzene (BFB)	50	100%		

Method RL

ProVera

Analytical Laboratories, Inc.

Certification # 1920

CLIENT:

HerSchy Environmental

Project ID:

Chalk Mt. Liquor

Analysis Type: EPA Method 8260B

Analysis Date: 3/25/2005

Report Date: 3/28/2005

Principal Analyst: Alexander Candia

Sample ID:

7677-004 MW-4

4 - 1 - 1	227 07 0000 200	12000		Multiplication
Analyte	Result	Units	Method RL	Factor
5 Oxygenates				
t-Butanol (TBA) Tert-Butyl Alcohol	ND	ug·L	2.5	1
Methyl Tert-Butyl Ether (MTBE)	ND	ug/L	0.5	1
Diisopropyl Ether (DIPE)	ND	ugL	0.5	1
Ethyl Tert-Butyl Ether (ETBE)	ND	ug I.	0.5	1
Tert-Amyl Methyl Ether (TAME)	ND	ug L	0.5	ı
BTEX Components				
Benzene	ND	ug-L	0.5	1
Toluene	ND	ug L	0.5	1
Ethylbenzene	ND	ug/L	0.5	I
m, p & o Xylenes	ND	ug/L	0.5	i
Lead Scavengers				
1.2 Dichloro ethane (1,2 DCA)	ND	1127	0.5	1
1.2 Dibromo ethane (EDB)	ND	ug L	0.5	1
Internal Standards	Results	% Recovery		
Benzene, fluoro	50	100%		
Benzene-d5, chloro-	50	100%		
1,4-Dichlorobenzene-d4	50	100%		
Surrogate Standards				
Methane, dibromofluoro-	44	88%		
1.2-Dichloroethane-d4	57	114%		
Toluene-d8	48	96%		
p-Brombflugrobenzens (BFB)	49	98%		

5221 Woodmere Drive, Bakersfield, CA 93313 Phone: (661) 827-5240 Fax: (661)827-5244

Analytical Laboratories, Inc.

Certification # 1920

CLIENT:

HerSchy Environmental

Project ID:

Chalk Mt. Liquor

Analysis Type: EPA Method 8260B

Analysis Date: 3/25/2005

Report Date: 3/28/2005

Principal Analyst: Alexander Candia

Sample ID:

7677-005 MW-5

Analyte	Result	Units	Method RL	Method RL Multiplication Factor
5 Oxygenates				
t-Butanol (TBA) Tert-Butyl Alcohol	ND	ug l.	2.5	1
Methyl Tert-Butyl Ether (MTBE)	ND	ug L	0.5	1
Diisopropyl Ether (DIPE)	ND	ug l.	0.5	ì
Ethyl Tert-Butyl Ether (ETBE)	ND	ue L	0.5	1
Tert-Amyl Methyl Ether (TAME)	ND	ug L	0.5	1
BTEX Components				
Benzene	ND	ug I.	0.5	1
Toluene	ND	ue-L	0.5	i
Ethylbenzene	ND	ng I	0.5	1
m , p & o Xylenes	ND	ug 1.	0.5	i
Lead Scavengers				
1.2 Dichloro ethane (1,2 DCA)	ND	ue L	0.5	1
1,2 Dibromo ethane (EDB)	ND	ugiL	0.5	1
Internal Standards	Results	% Recovery		
Benzene, fluoro	50	100%		
Benzene-d5, chloro-	50	100%		
1,4-Dichlorobenzene-d4	50	100%		
Surrogate Standards				
Methane, dibromofluoro-	47	94%		
1.2-Dichloroethane-d4	35	70%		
Toluene-de	51	102%		
p-Bromosyorphenzene (BFB)	47	94%		

Analytical Laboratories. Inc.

EPA 8260B QA-QC Report EPA 8015M QA-QC Report

Certification # 1920

CLIENT:

HerSchy Environmental

Projects Covered by this QA-QC:

Chalk Mt. Liquor

Analysis Date:

3/25/2005

Matrix:

MSD

AQ

Man.	100			
BFB:				
Internal Standards	Results	% Recovery 100%		
Benzene, fluoro	50			
Benzene-d5, chloro-	50	100%		
1,4-Dichlorobenzene-d4	50	100%		
Surrogate Standards				
Methane, dibromofluoro-	55	110%		
1,2-Dichloroethane-d4	52	104%		
Toluene-d8	53	106%		
p-Bromofluorobenzene (BFB)	50	100%		
18:				
internal Standards	Results	% Recovery		
Benzene, fluoro	50	100%		
Benzene-d5, chloro-	50	100%		
1,4-Dichlorobenzene-d4	50	100%		
Surrogate Standards				
Methane, dibromofluoro-	52	104%		
1.2-Dichloroethane-d4	49	98%		
Toluene-d8	61	122%		
p-Bromofluorobenzene (BFB)	49	98%		
MS:	Results	% Recovery		
1,1-Dichloroethene	50	100%		
Trichloroethene	52	104%		
Chlorobenzene	54	108%		
Toluene	49	98%		
Benzene	62	124%		
p-Bromofluorobenzene (BFB)	51	102%		
MSD:	Results	% Recovery		
1,1-Dichlorgethene	42	84%		
Trichloroethene	56	112%		
Chlorobenzane	47	94%		
Toluene	50	100%		
Benzené	59	118%		
p-Bromo@uorobenzene (BFB)	53	106%		
8015M-TPHG				
	%Recovery			
BFB	96%			
1B	96%			
M\$	110%			
4400				

102%

5221 Woodmere Drive, Bakersfield. CA 93313 Phone: (661) 827-5240 Fax: (661)827-5244

PROVERA ANALYTICAL LABORATORIES

Chain of Custody Form

Client Name:	Herschi	Env. ronmental	Analysis Requested									Sample Matrix		
Project Name:	Chal	Environmental KMt. Liquor adero						605)	600)		(2)		OF THE TAX SEPTEMBERS AND ADDRESS AND ADDR	Aqueous
Client Address:	Atasc	adero	(Q	(91	015M)	SM)	260b)	5 Oxygenates (EPA 8260b)	Oxygenates (EPA 8260b)	(90	ead scavengers (8260b)			
Project Manager: Josh Taves		A 8021	A 802	line (8	1 (801	PA 8	ites (E	ites (E	A 826(engers	30b)		Soil	
Sampler Name:		urule	BTEX (EPA 8021b)	MTBE (EPA 8021b)	TPH Gasoline (8015M)	TPH Diesel (8015M)	Volatiles (EPA 8250b)	cygena	kygena	MTBE (EPA 8260b)	d scavi	3TEX (8280b)		Acidified
Sample Date	Sample Time	Sample Description and Container Type	BTE	MTE	TPH	I G F	Vote	500	7 0	MT	Lea	BTE		Comments
3/16/05	1305	MW-1			X			X		X	X	X	PO:	4677-001
	1245	MW-2								İ	i	i		.002
	1230	MW-3												-003
	1350	MW-4												-004
V	1325	MW.5			V			1		V	V	V		-005
		· · · · · · · · · · · · · · · · · · ·												
													a della validio valori, collisio para associato della della colonia.	N. Order
													Topono e a carrie de la calabación e e e e e e e e e e e	
			_										Made and the second	
						-	AL PROPERTY LES						CAP TYMERONIC MATERIAL PROPERTY MATERIAL	
Turnaround Time Requested: 24 Hour 48 Hour 5-Day Standard X							The Property of the Control of the C							
Relinquished	By: (LL)	Mouli Date:	Ti	Reli	nqui	she	d B	y:	terifficación registrarios	-		-	An againmage agreen, Silvenside Side, again, Agus Ionn, É Minneagain	Date:
Received By:	Die	Date: 3/22/0	5	Rec	eive	d B	y:							Date: